Enter a problem...
Linear Algebra Examples
Step 1
The determinant of a matrix can be found using the formula .
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Apply the distributive property.
Step 2.1.2
Rewrite using the commutative property of multiplication.
Step 2.1.3
Rewrite using the commutative property of multiplication.
Step 2.1.4
Simplify each term.
Step 2.1.4.1
Multiply by by adding the exponents.
Step 2.1.4.1.1
Move .
Step 2.1.4.1.2
Use the power rule to combine exponents.
Step 2.1.4.1.3
Subtract from .
Step 2.1.4.2
Multiply by by adding the exponents.
Step 2.1.4.2.1
Move .
Step 2.1.4.2.2
Use the power rule to combine exponents.
Step 2.1.4.2.3
Subtract from .
Step 2.1.4.3
Multiply .
Step 2.1.4.3.1
Raise to the power of .
Step 2.1.4.3.2
Raise to the power of .
Step 2.1.4.3.3
Use the power rule to combine exponents.
Step 2.1.4.3.4
Add and .
Step 2.1.5
Apply the distributive property.
Step 2.1.6
Multiply by .
Step 2.1.7
Multiply by .
Step 2.1.8
Remove parentheses.
Step 2.1.9
Apply the distributive property.
Step 2.1.10
Multiply by by adding the exponents.
Step 2.1.10.1
Move .
Step 2.1.10.2
Use the power rule to combine exponents.
Step 2.1.10.3
Subtract from .
Step 2.1.11
Multiply by by adding the exponents.
Step 2.1.11.1
Move .
Step 2.1.11.2
Use the power rule to combine exponents.
Step 2.1.11.3
Subtract from .
Step 2.1.12
Multiply .
Step 2.1.12.1
Raise to the power of .
Step 2.1.12.2
Raise to the power of .
Step 2.1.12.3
Use the power rule to combine exponents.
Step 2.1.12.4
Add and .
Step 2.2
Combine the opposite terms in .
Step 2.2.1
Add and .
Step 2.2.2
Add and .
Step 2.3
Factor out of .
Step 2.4
Factor out of .
Step 2.5
Factor out of .
Step 2.6
Rearrange terms.
Step 2.7
Apply pythagorean identity.
Step 2.8
Multiply by .