Linear Algebra Examples

Find the Determinant [[e^(-3x)cos(2x),e^(-3x)sin(2x)],[-3e^(-3x)cos(2x)-2e^(-3x)sin(2x),-3e^(-3x)sin(2x)+2e^(-3x)cos(2x)]]
Step 1
The determinant of a matrix can be found using the formula .
Step 2
Simplify the determinant.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Apply the distributive property.
Step 2.1.2
Rewrite using the commutative property of multiplication.
Step 2.1.3
Rewrite using the commutative property of multiplication.
Step 2.1.4
Simplify each term.
Tap for more steps...
Step 2.1.4.1
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.4.1.1
Move .
Step 2.1.4.1.2
Use the power rule to combine exponents.
Step 2.1.4.1.3
Subtract from .
Step 2.1.4.2
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.4.2.1
Move .
Step 2.1.4.2.2
Use the power rule to combine exponents.
Step 2.1.4.2.3
Subtract from .
Step 2.1.4.3
Multiply .
Tap for more steps...
Step 2.1.4.3.1
Raise to the power of .
Step 2.1.4.3.2
Raise to the power of .
Step 2.1.4.3.3
Use the power rule to combine exponents.
Step 2.1.4.3.4
Add and .
Step 2.1.5
Apply the distributive property.
Step 2.1.6
Multiply by .
Step 2.1.7
Multiply by .
Step 2.1.8
Remove parentheses.
Step 2.1.9
Apply the distributive property.
Step 2.1.10
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.10.1
Move .
Step 2.1.10.2
Use the power rule to combine exponents.
Step 2.1.10.3
Subtract from .
Step 2.1.11
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.11.1
Move .
Step 2.1.11.2
Use the power rule to combine exponents.
Step 2.1.11.3
Subtract from .
Step 2.1.12
Multiply .
Tap for more steps...
Step 2.1.12.1
Raise to the power of .
Step 2.1.12.2
Raise to the power of .
Step 2.1.12.3
Use the power rule to combine exponents.
Step 2.1.12.4
Add and .
Step 2.2
Combine the opposite terms in .
Tap for more steps...
Step 2.2.1
Add and .
Step 2.2.2
Add and .
Step 2.3
Factor out of .
Step 2.4
Factor out of .
Step 2.5
Factor out of .
Step 2.6
Rearrange terms.
Step 2.7
Apply pythagorean identity.
Step 2.8
Multiply by .